Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.05.01 Сопротивление материалов						
наименование дисциплины (модуля) в соответствии с учебным планом						
Направление подготовки / специальность						
22.03.01 МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИИ МАТЕРИАЛ	IOB					
Направленность (профиль)						
22.03.01.02 Физико-химия материалов и процессов						
Форма обучения очная						
Год набора 2020						

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
K.T	.н., доцент, Т.Г.Калиновская
	DODARIOCEF WHIMING OF THE WOMING

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

В системе инженерной подготовки бакалавров по направлению 22.03.01 «Материаловедение и технологии материалов» дисциплина «Сопротивление материалов» относится к вариативной части профессионального цикла дисциплин в соответствии с Федеральным образовательным стандартом высшего образования.

Область профессиональной деятельности выпускников по направлению подготовки 22.03.01 «Материаловедение и технологии материалов», освоивших программу бакалавриата, включает:

разработку, исследование, модификацию и использование (обработку, эксплуатацию и утилизацию) материалов неорганической и органической природы различного назначения, процессы их формирования, формо- и структурообразования, превращения на стадиях получения, обработки и эксплуатации;

процессы получения материалов, заготовок, полуфабрикатов, деталей и изделий, а также управление их качеством для различных областей техники и технологии (машиностроения и приборостроения, авиационной и ракетно-космической техники, атомной энергетики, твердотельной электроники, наноиндустрии, медицинской техники, спортивной и бытовой техники).

Объектами профессиональной деятельности выпускников, освоивших программу бакалавриата, являются:

основные типы современных конструкционных и функциональных неорганических (металлических и неметаллических) и органических (полимерных и углеродных) материалов, композитов и гибридных материалов, сверхтвердых материалов, интеллектуальных и наноматериалов, пленок и покрытий;

методы и средства испытаний и диагностики, исследования и контроля качества материалов, пленок и покрытий, полуфабрикатов, заготовок, деталей и изделий, все виды исследовательского, контрольного и испытательного оборудования, аналитической аппаратуры, компьютерное программное обеспечение для обработки результатов и анализа полученных данных, моделирования поведения материалов, оценки прогнозирования И эксплуатационных характеристик;

технологические процессы производства, обработки и модификации материалов и покрытий, деталей и изделий; оборудование, технологическая оснастка и приспособления; системы управления технологическими процессами;

нормативно-техническая документация сертификации И системы материалов и изделий, технологических процессов их получения и обработки; отчетная документация, записи протоколы хода результатов И И по технике безопасности экспериментов, документация И безопасности жизнедеятельности.

Виды профессиональной деятельности, к которым готовятся выпускники, освоившие программу бакалавриата:

научно-исследовательская и расчетно-аналитическая;

Перечень проблем, рассматриваемых в дисциплине «Сопротивление материалов», с развитием науки непрерывно пополняется, образовывая самостоятельные области, связанные с изучением, например механики твердых, деформируемых тел, жидкостей и газов. Современная механика решает целый комплекс задач, посвященных проектированию и расчету различных конструкций, сооружений, механизмов и машин, опирающихся на ряд основных понятий, законов, принципов, методов механики.

Целью изучения дисциплины является: развитие инженерного мышления, освоение студентами инженерных методов расчета элементов конструкций на прочность, жесткость и устойчивость, овладение основами проектирования.

1.2 Задачи изучения дисциплины

В соответствии с требованиями ФГОС ВО основной задачей изучения дисциплины «Сопротивление материалов» является приобретение студентами направления 22.03.01 «Материаловедение и технологии материалов» знаний, умений, навыков в соответствии с требованиями ФГОС ВПО, на основе которых формируются общекультурные и профессиональные компетенции для решения следующих профессиональных задач:

научно-исследовательская и расчетно-аналитическая деятельность:

сбор данных о существующих типах и марках материалов, их структуре и свойствах применительно к решению поставленных задач с использованием баз данных и литературных источников;

участие в работе группы специалистов при выполнении экспериментов и обработке их результатов по созданию, исследованию и выбору материалов, оценке их технологических и служебных качеств путем комплексного анализа их структуры и свойств, физико-механических, коррозионных и других испытаний;

сбор научно-технической информации по тематике экспериментов для составления обзоров, отчетов и научных публикаций, участие в составлении отчетов по выполненному заданию;

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине
ОПК-4: способностью сочетать	ь теорию и практику для решения инженерных
задач	
ОПК-4: способностью	- основы расчетов внутренних силовых факторов для
сочетать теорию и практику	определения опасного сечения в нагруженном брусе;
для решения инженерных	

задач	
	- определять рациональную форму и размеры
	поперечного сечения нагруженного бруса ипользуя
	условия прочности;
	-навыками выполнения расчетов элементов
	конструкций на прочность и жесткость;
ПК-7: способностью выбирать	и применять соответствующие методы
моделирования физических, х	имических и технологических процессов
ПК-7: способностью выбирать	сущность и назначение метода сечений,
и применять соответствующие	закономерности эпюр внутренних силовых факторов
методы моделирования	в нагруженном брусе;

физических, химических и технологических процессов

выполнять расчеты, моделировать характер изменения напряжений в поперечном сечении и по длине бруса, выполнять расчет деформаций нагруженного бруса; навыками проведения анализа напряженного и деформированного состояний нагруженного бруса.

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

Вид учебной работы	Всего, зачетных единиц (акад.час)	e 1
Контактная работа с преподавателем:	1 (36)	
занятия лекционного типа	0,5 (18)	
практические занятия	0,5 (18)	
Самостоятельная работа обучающихся:	1 (36)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.											
№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционного - типа		лекционного		лекционного		Семина Практи	тия семин ры и/или ические ятия	Лабора работн	типа торные ы и/или тикумы	Самосто работа,	ятельная ак. час.
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС				
1.00	сновные понятия сопротивления материалов.												
	1. Основные определения. Допущения в сопротивлении материалов. Внешние силы. Внутренние силы. Метод сечений. Напряжения. Перемещения и деформации. Закон Гука.	2											
	2. Изучение теоретического мктериала.							2					
	3. Расчетно-графические задания, задачи (РГЗ).							2					
2. Пј	оостейшие виды деформаций.	-											
	1. Растяжение и сжатие. Внутренние усилия. Напряжения при растяжении-сжатии. Деформации при растяжении и сжатии. Условия прочности и жесткости при растяжении и сжатии.	2											

2. Механические испытания. Диаграммы растяжения. Наклеп. Испытания на сжатие. Испытания на твердость. Допускаемые напряжения. Коэффициент запаса прочности. Геометрические характеристики плоских сечений: Статический момент. Моменты инерции. Моменты инерции при параллельном переносе и повороте осей. Главные оси и главные моменты инерции.	2				
3. Чистый сдвиг. Кручение. Внутренние силовые факторы, напряжения, деформации при кручении круглого вала. Расчёты круглого вала на прочность и жёсткость.	2				
4. Изгиб. Внутренние силовые факторы при изгибе балки. Дифференциальные зависимости Журавского. Напряжения при чистом изгибе. Напряжения при плоском поперечном изгибе. Условие прочности при изгибе. Перемещения при изгибе.	2				
5. Построение эпюр продольных сил консольного стержня.		2			
6. Расчет консольного стержня на прочность и жесткость.		2			
7. Геометрические характеристики плоских сечений.		2			
8. Построение эпюр крутящих моментов круглого вала.		2			
9. Расчет на прочность и жесткость круглого вала.		2			
10. Построение эпюр поперечных сил и изгибающих моментов консольной балки. Расчет балки на прочность.		2			
11. Построение эпюр поперечных сил и изгибающих моментов двухопорной балки. Расчет балки на прочность.		2			

12. Расчет двухопорной балки на жесткость.			2				
13. Изучение теоретического материала.						8	
14. Расчетно-графические задания, задачи (РГЗ).						8	
3. Сложное сопротивление.		•	•	•	•		•
1. Теория напряженно-деформированного состояния. Напряженно-деформированное состояние в точке. Обобщенный закон Гука. Теории прочности.	2						
2. Расчеты на сложное сопротивление. Понятие сложного сопротивления. Косой изгиб. Изгиб с растяжением (сжатием). Внецентренное растяжение (сжатие). Кручение с изгибом. Статически-неопределимые стержневые системы.	2						
3. Изучение теоретического материала.						4	
4. Расчетно-графические задания, задачи (РГЗ).						4	
4. Усталостная прочность.							
1. Расчеты на усталостную прочность. Явление усталости. Кривая усталости при симметричном цикле. Факторы, влияющие на предел выносливости. Расчеты конструкций на усталость.	2						
2. Устойчивость сжатых стержней. Понятие об устойчивости первоначальной формы равновесия. Формула Эйлера для критической силы. Пределы применимости формулы Эйлера. Устойчивость сжатых стержней за пределами упругости. Расчет на устойчивость с помощью коэффициента снижения допускаемого напряжения.	2						
3. Расчет на устойчивость с помощью коэффициента снижения допускаемого напряжения.			2				
4. Изучение теоретического материала.						4	

5. Расчетно-графические задания, задачи (РГЗ).				4	
Всего	18	18		36	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Косолапова С. А., Калиновская Т. Г. Сопротивление материалов: учебное пособие для студентов технических специальностей(Красноярск: ГУЦМи3).
- 2. Феодосьев В. И. Сопротивление материалов: учебник для технических вузов(Москва: Московский технический университет [МГТУ] им. Н.Э. Баумана).
- 3. Александров А. В., Потапов В. Д., Державин Б. П., Александров А. В. Сопротивление материалов: учебник для студентов вузов(Москва: Высшая школа).
- 4. Степин П.А. Сопротивление материалов: учебник(СПб.: Лань).
- 5. Копнов В. А., Кривошапко С. Н. Сопротивление материалов: Руководство для решения задач и выполнения лабораторных и расчетнографических работ: учебное пособие для вузов по направлениям и специальностям высшего профессионального образования в области техники и технологии, сельского и рыбного хозяйства(Москва: Высшая школа).
- 6. Дроздова Н. А., Туман С. Х. Сопротивление материалов, механика и прикладная механика: цикл заданий и методические указания к выполнению расчетно-графических работ для студентов всех специальностей дневной формы обучения(Красноярск: ГУЦМи3).
- 7. Гресс П. В. Руководство к решению задач по сопротивлению материалов (Москва: Высшая школа).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

- 1. Программное обеспечение для работы с электронными документами текстовый процессор Microsoft Word.
- 2. Компьютерная программа, используемая для создания, редактирования и показа презентаций на проекторе или большом экране Microsoft PowerPoint.
- 3. Банк тестовых заданий для организации и проведения тестирования.

4.

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

1. Основным источником информационной справочной системы при изучении дисциплины «Сопротивление материалов» является Научная библиотека СФУ — одно из основных подразделений университета, которое обеспечивает качественное информационное сопровождение учебного процесса.

2. Результатами успешного освоения дисциплины, отвечающих комплексом необходимых компетенций, является качественное формирование книжного фонда и электронных образовательных ресурсов Научной библиотеки СФУ, а также развитие и модернизация программно-аппаратного комплекса Электронной библиотеки, которая обеспечивает возможность доступа к обучению из любой точки доступа информационно-телекоммуникационной сети «Интернет» для пользователей всех категорий, в том числе и учащихся по направлению подготовки 22.03.01 «Материаловедение и технологии материалов».

3.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Мультимедийные средства для лекционных занятий - презентации к лекциям в системе Power Point, для практических занятий используются: банк тестовых заданий и программный комплекс Columbus «Сопротивление материалов».

Учебно-наглядные пособия для лекционных занятий — демонстрационные плакаты (25 шт); для практических занятий — макеты и модели механизмов (50 шт).